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The solution of the problem of explosion of high explosive charges in the
ground 1s of 1nterest for the needs of seismic prospecting, mining, or pro-
duction of underground cavities,by an explosion method. In various cases it
1s necessary to have information of the different characteristics of this
solution, on the energy and mode of the elastic waves emitted by the seat of
origin of the explosion; on the dynamics of the formatlon of the explosion
cavity, on the stress and veloclity fields in the zones near the explosilon
where 1nelastlc behavior of the ground 1s manifested essentially, etc. Some
approximate solutions of this problem are known [1 to 7], which are based on
very strong simplifying schematlzatlons of the phenomena and which do not
glve sufficlently satisfactory quantitative and qualitative results. An
attempt 1s made below to give a more rigorous formulation and effectlve solu-
tion of the problem of an underground explosion by using existlng theoretical
conceptlons of the behavior of ground [8 to 10], as well as the results of
experiments formulated especially on thelr basis [11 to 15].

1. The equations of the problem for centrally symmetric motion of the
ground are, as follows from [91:
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(1.1)
e (z) Z{égigg, 2Jy = (6, + p)2+ 2 (0, + p)? cont.
—3p=0,+20,,  p—py=1(0,0,) O=1—£, 6,=1-2)

The initial and boundary conditions of the problem are

ar (r, 0) = 0y (r, 0) = — p,, v(r,0) =0

6(r,0) =06, (r, 0)=0, r>a, (1.2)
o, (a, t) = — P (a), v(a, t) =da/dt
or (1, £)—> — Py, Oy (r, t)— — py, v{r, ) >0 (1.3)

9(7‘, t)“’O’ 0*(7‘, t)"'>0 for r — o0

Here r and ¢ are«the coordinate and time; v 1s veloclty; o, and ¢
are the principal stresses; p and p, are the present and initial densities;
G 1is the shear modulus, and p, 1s the 1nitlal pressure in the ground; the
functions p(p) and y(8,6,) describe the condition of the plasticity and
volume compressibllity of the ground.

The function ¢(a) 1in the first of conditions (1.3) expresses the cus-
tomarily used hypothesis on adiabatic and quasi-stationary change in the
state of the gaseous explosion products and, for the customary high explosive
(as INT, say), may be taken in the form

¥ (a) =Poo.(%>—3\, (for TNT y = 1.25, P,o % 2 X 10* kg/cm?) (1.4)

The unknown function ¢ = a(t) describes the law of boundary motion of
the explosion cavity and should be found during the process of solving the
problem.

As the experiments [11 to 15] show, the function F(p) for sand, loam,
loess, clay (and only such ground will be considered herein) 1is

6F (p) = (kp + b)* (1.5)

in a range of variation of p from small values to hundreds of atmospheres.
The pressure P 1in the explosion problem varies between several tens of
thousands of atmospheres (the value of pP,, in (1.4)) to small values on the
order of p,.

For large values of (apparently on the order of thousands and tens of
thousands of atmospheres@, the function F(p) should remain bounded [10 and
16}, i.e. the relationship (1.5) cannot be used throughout in solving the
problem of an explosion in ground set in motion at all times. There are not
yet specific experimental results on the value of P , starting with which
F(p) ceases to increase. However, taking into account the abrupt drop in
all the stresses, particularly in p in a small neighborhood of the explo-
sion cavity in the first instants after the detonatlion of the high-explosive
charge, 1t can apparently be assumed without great error, that the relation-~
ship (1.5) holds for all values of P encountered in the problem.

In the first instants, when a small reglon of ground around the explosion
cavity 1s in motion this region will, as may be shown, be separated from
ground not yet involved in the motion by & spherical surface of strong dis-~
continuity, a shock wave being propagated into the ground at re:t. The state
of the ground particles directly behind this surface ir determined by the
dependence of o0, on § =6,, which has been obtained in the analysis of uni-
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axial deformation of & ground element, and which, for large values of g,,
may correspond to strain with elastic shear, l.e.wewill have Jy< P{p); for
smaller values of g, may correspond to strain with plastic shear, i.e.

Ja= F(p). The value of o, delimiting these two states is determined [16
and 17] by the form of the function F{p) and p,.— po= 50, = f(®,,0,).

After the shock wave has passed the particle, this latter starts to be
moved toward lncreasing r , shear strains develop, and at a certain time
they become such that plastic flow sets in, i.e. for large values of g, the
elastic strains for which A = 0 will hold only in a certain layer adjacent
to the shock-wave surface, Because of the large value of @{g~103kg/cn?),
as is seen from (1.1), the elastic shear strains may only hold for small
values of particle displacement and it can be expected that this layer will
be relatively thin., Hence, to simplify the mathematical problem, the exist-
ence of this layer can be neglected and we can consider that the plastic
flow starts directly behind the front of the shock wave., This assumption
grobably introduces a negliglbly small error into the solution of the prob-

em.

In the expression for A (see {1.1)), the difference is 0, —0,< 0 for
Ja= F{P). As will be seen from the solution to the problem constructed below,
the inequalities gp/at < vop /or< 0, dv/0r <0 also hold in the initial
stages of the motion. Moreover, v > 0 in the initial stage, All this means
that if the plasticity condition is satisfied on the shock-wave surface, it
1s also retalned everywhere behind this surface in the initial stage.

The assumptions made permit simplification of the original system of
Equations (1.1).

Henceforth, we shall use & simplified system, as

a0 90 av 20\ 20, 00,
B o+ U—0) (5 +)=0 FEoTr=0
ds, 2 i
Po(—g%+ v%i;-)—<1—~e>[3,, +—,-(<rr—-c¢)}=0 (1.6)
0, =0a0r +f, —3p=0,+ 20, o= 3V2—k B = 3
6=9*+8(p(p—p0,9*), 3V§+2k’ IV 242k

Here ¢ 4s & small parameter (&< 1). The smallness of the parameter
¢ 1s assoclated with the fact that, as experiments show, the discharging
branches of the ¢ = g(p ~ Py ,0,) diagram are very insignificantly inclined
to the P-axis for the ground being considered.

Hence, the characteristic value of this slope may be introduced as ¢
and it may be considered that o{p — py,04) ~ 1 .

Conditions (1.2) and (1.3) change partially: conditions of the shock
wave

— 0, =—0, (R, ) =py+pf, (dR]dt)?, v,=v(R, )=0,dR/dt (1.7)
replace the conditions for r - « .,

Here r = 7(%) is the unimown law of shock-wave motion. The shock wave
will attenuate as time passes, i1ts propagation velocity dﬁ/&t will drop

and & time will arrive when it willl become equal to the propagation veloclty
of small elastic disturbances in the wrdeformed ground at rest ahead of the

shock wave - 1
co = [— po~t doy (0) / b,
Here g, = o,(a} is & dependence corresponding to uniaxial strain., In the
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notation customary in the elastlcity theory, we wlll have for ¢,
P =A+2u=r+26=K+ 26, K= (dp/d)= (1.8)
Here A,u = G are Lamé coefficlents.

Starting with this time, a slight motlon starts ahead of the shock wave,
emlssion of an elastic wave by the shock wave~front begins and the subse-
quent construction of the problem should take this wave into account.
Experiments show [11 to 13] that small elastic disturbances actually emerge
to the front at some distance from the seat of the explosion durlng propaga-
ticn of the exploslon wave,

The possibility of the emlssion of an elastic wave 1s determined by the
properties of the dependence o,= 0,{g) obtalned from the initial undeformed
state durlng unlaxial strain. For small strains, this will be the elastilc
relationshilp (

dw u 1s the
— 6z (0) = p(8) +4/3G8H, = displacement) (1.9)

If plastic shear strain starts wlth increasing 8 , the relatlonship (1.9)

1s replaced by another, obtained by using the plasticlty condition (1.5)
3 28
— Oy () = mp (H) + me=——— =
Evidently the transition to plastic shear 1s possible when the curves

(1.9) and (1.10) intersect in the 0,6 plane at the point (9 =6,, 0,= — 0, ).

If the condition 5

- 2V 2G

K< 2V (1.11)
is satisfied, such an intersection always occurs., If inequality (1.11) is
not satisfied, there will be no intersection at p”(§) 2> 0 for any value of
§ ; 1t may occur in thils case 1if P?(e) is negative for smell values of 9
and positive for large values of 6 . In all cases when there is an inter~
section, the uniaxial strain dilagram will agree with (1.9) for s < 8, and
with (1.10) for 6 > 8, ; however, plastlc shear may agaln set 1n (16 and 17]
for significant P

The quantity -— dc‘/ae will decrease by a jump at the polnt of intersec-
tion. If p(s) = k6 (linear elasticity) for e £ 6, , the perturbations
ahead of the shock willl be described by linear equations of the theory of
elasticity, if the dependence p(s) is nonlinear, then the equations describ-
ing the perturbations ahead of the shock will be nonlinear also. However,
this nonlinearity is usually negligible and 1t i1s apparently possible to
1imit oneself to the linear =case.

The solutions of the problem should be constructed by jolning the solution
of (1.6) to the solution of the equations describing the perturbations ahead
of the shock by means of the conditions on the shock, which will differ from
(1.7) because of the perturbations ahead of the wave. However, these condi-
tions will be inadequate because the perturbations ahead of the shock are
themselves unknown, hence, still another (precisely one, as will be seen
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from the subsequent exposition) condition should be appended.

The cholce of this condition for the one-dimensional plane motion case 1s
elementary [18 and 17] and reduces to the following. If the inequality
P“{9) > O 1is satisfied for O 0 < §,, then o,= — g, Will be this condi~
tion. If the 1lnequality p“(8) < O is satisfied for O £ § < 6, then this
condition reduces to the equality

AR 1 doy, (0) 7%
Vg Cp = | — — ———
ot Po do
for 05 6 < 09, and to the equality o, = — 0, for ¢ = 8,; in the latter

case the 1lnequality
dR [ dt — v, < ¢, (0,)
will be satisfled.
Here v, is the particle velocity directly in front of the wave, It 1s

much less than dﬁ/bt and o,, hence it may be omitted from the inequali-
ties,

The situation 1s more complicated in the case under conslderation because
2 g,= 0,(08) does not exist here (o, depends on two arguments au/a" and u/T;
u 18 the displacement), whose properties determine the selection of the
additional condition. However, considerations on shock-wave stability and
evolutionarity of the solution, which permit making the selection of this
condition in the plane case [17], are easily realized in this case too. 1If
p”(e) < 0O for ‘0g 8 < §,, the stabllity condition again leads to the rela-
tion dR 1 06, (8 &) 1" ou u .

fo[-h el g wr om

Since the perturbation ahead of the shock 1s propagated into & medium at
rest, 1t will be a one-direction wave (divergent), hence conditions (1.,12)
are sufficlent for the solution of the problem in the case considered. Ifr
p”(e) >0 for O0g g < 8,, the leading edge of the perturbation will also
be a shock wave. The intensity of this wave, as well as the continuous
motion behind it up to the fundamental shock, are determined by a function
which 18 unknown and 1s determined, if one missing condition connecting the
motion parameters directly ahead of the fundemental shock, 1s appended. It
can be shown that the plasticity condition
(1.5) will be this condition.

r

Let us assume that this 18 not so, i.e. to
the right of the line r = R(¢) in the r¢
plane, there 18 a left boundary line of the
domain of motion where the shear proceeds elas-
tically (iine 04 , Pig.l). OCondition (1.5)
is satisfied in the region between this line
and the 1ine » = R(¢) ; the shear proceeds
plastically. The case when the shear 1s elas-
tic everywhere to the right and up to the line
r = R(¢) 1s evidently impossible since
dr/dt > ¢, would hold for p“(s) » O (O < 8<g,),
which 1s incompatible with ghe fact that the
line r = p(¢) must pass through the point ¢
Fig. 1 (time of emission of the elastic wave) into
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the domain where dR/dt < g,o 8nd o, 2 G40 (Ceo 18 the value of g, directly
behind the leading edge of the perturbation, the slope of the line 0¢). By

virtue of condition (1.11), the propagation velocity of the small perturba-

tions in the plastic qomain pBO4 will be smaller than in the elastic domain
A0C. 1t is also evident that the propagation velocity of the boundary state
at each point on (4 (the slope of the line ¢4 ) should be included between
the values of these perturbation velocities at the points on 04 .

Let us now consider the characteristics of the two families MD and ND
for the plastic equations. Evidently, if the solution on MF 1s known, we
have a Cauchy problem in the triangle ND¥ , which 1s solved uniquely and
determines the values of the desired functions at the point p» on the shock
wave 0OF , which makes the conditions at its point ) completely deflned
and sufficlent for the construction of the solution to the left of the shock.
Moreover, Af the line (04 1s prescribed, the solution is completely defined
in the elastic domain® 40C also. Hence, assignment of this line completely
defines the solution of the problem as & whole, where such assignment may be
completely arbiltrary, and the solution 1s not unique. The solution of the
problem turns out not to be evolutionary, i.e. assignment of the desired
functions at a certain time ¢ = ¢, does not determine the solution unlquely
in subsequent times. The contradiction is eliminated if it 1s assumed that
the plastic domein pB04 does not exist, i.e. that condition (1.5) is satis-
figd only directly ahead of the shock wave on the line ¢» . Thils means that
relationship (1.5) should be taken as the missing condition connecting the
values of the motion parameters on the shock.

For simplicity, we shall henceforth consider linear relationships to
describe the motlon ahead of the shock. In this case, the dependences be-
tween the stresses and velocitlies of the deformations which are obtained from
(1.2) for A= 0 and §, = 0 << 1 transform into Hooke's law after integra-
tion with respect to the time

o= (K3 0) (3 +2) 262
cwz(K_éa)(g_f+%)+2G%—po (1.13)

As is known, the solution of the problem of a diverging centrally symmet-
ric elastic wave 1s expressed in terms of one function by means of Formula

_ 0 D(cot—r) D ' __ Ou @7 @’
o= g =~ = . ve= = — e+ )
1 1 4 1
Ore = po0i® [+ O -+ dy* (5 O + 2 @) — 1y
1—2y ., 1 .,
°¢e=PoCoz[*—r—Y(D —‘272(?@’ +%‘(D>]—Po
2 G =2
V= K¥i6 = 20=9 (1.14)

Here y 1s the ratio of the transverse and longltudinal elastic wave
velocities; ¢ 1s Poilsson's ratio, the primes on the & denote differen-
tiation. The conditions on the shock 7 = R(t) are written as

9* — 0. .
— (s — Opge) = po————(1 —% 3)2 (R — ve)?, Ogr = 00, + B
e'

R (0 —8,) = (1 —0,) vr — (1 — 64) v, (1.15)
Here and henceforth the dot will denote differentiation with respect to
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time and the values of the quantities on the shock will bear the subseript
* Since 0, << 1, 1in the elastic wave, conditions (1.15) may be simplified

(Ur‘ - 0're') - po( — 8. ) (R - ve*) ’ Oger = O0pes 1~ B
RO, —0s) =02, —(1—0,) Ve (1.16)

It 1s easy to show that the expression j for particles directly in front
of the shock will be zero. In the elastic wave itself, 1.,e. for r > Rr(t),
the condition that the shear proceeds elastically Ja< F(p), reduces to

v ’ " _ b—p

Lo R+ VO FOR)|<| e PO — | (01D

This inequality turns into an equality at the point of each characteristic
g =gyt —r = const for pr =R . Since the left-hand side in (1.17) ap-
preaches zero for & = const and R < r - » , and the right-hand side
approaches a positive quantity {t may be expected that condition (1.17) will
be satlsfled, i.e. that plastic shear domains will not occur ahead of the
shock (thls latter circumastance would aubstantially complicate the solution
of the problem). Of course, compliance with condition (1.17) everywhere in
the domain 7 > R(¢) should be confirmed in the actual construction of the
solution.

As time passes, a time ¢, sets in when the shock wave is completely
exhausted, 1.e. the equalities ¥, =U,,, 0, = 0., Ory = Orey, will be satis-
fled at r =R = ﬁ(tl) , after which the motion will be continuous every=-
where, hence 1t will be a diverging elastic wave of (1.14) type in the domain
r> R, , which should join continuously with the solution of (1.1) in the
domain T < R_

2. Let us seek the solution of Equation (1.6) as power serles in the
small parameter ¢ , i.e.

v=" 4 + .., p=p"+ep'+ ..., 0, =004 &b, 2.1)
O’r=0'r0+80‘r1+...,0¢=0¢°—|-80¢1...,9=90+891+.

Substituting (2.1) into (1.6), we obtain first-approximation equations

000 06° av° 200 00 00
T =0 (G + f)_o T =
7} 0
o400 2) (1 — 9 [ 2 2 (50—09)] =0
00 =as?+ B, —3p° =02+ 20, 8° = 6,0 (2.2)

The second approximation equations are

o0t d 00° j 2p!
—a"r+v°a—?‘+‘ 0 (G + ) =0
R (2.3)
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IS N 10 [ost o (2.3)
p()(A{r 4 ° - Lol _5;,> — (1 —0) i — T(Jrl— 5 1)} +

r A cont.
P
LAt 93, L2y soy]--0 P S |
f vhr r (Je‘ 2y ) ? Sy T,
R J""‘)J'(yl o1 (.1 ] v
I oy o : s — ¢ (=1, :ic)

We do not write down the equations for the subsequent approximations, they
are awkward and not needed, in practice, for the solution of the problem.
The system (2.2) is nonlinear and agrees with the equations of the problem
for the particular case of & medium with the property de/dt=0 for gp/dt< O
(an incompressible medlum with volume unloading). All known attempts to
gsolve this problem have been made precisely under this assumption on the

medium [1 to 7]. The system (2.3) is linear and may be solved after having
constructed the first approximation.

Solution of the systems (2.2) and (2.3} with the requisite number of arbi-

trary functions are found by gquardatures. For (2.2) we have
ki

7 (‘.5)({) ,.—2’ é}:?»n - f (;) . i (,.Zi . 3%60 (l‘} d?), i!tl —_

.
..

90 .- 8*“, . (;'?” - (tﬁ‘[,“ ﬁ’ (}'rﬂ = ‘3(1*01}{”10 ([) “f“ ] E 2 »2IL-2) _;.,
de’{t)yy ¥y 5 I
e S R —————————— A I 2N }
@)y Sy UL Py @4

For the system of second approximations {(2.3) we have

(ed onar o) 0,0 =(Bu(C 0 dt+ K ()

o

b= 7t

0t 00— g (1 — . O, g e Rl [Hl ) -—}—RD {r, 1) dr]

D
o l=: a0l pt= —-——5—0] (2.5)

1 It 0
Al )= (7 + )@ (= pe 0, L= —3{e@a

Be (G t) = B (r = — 0 = — 37 @[ 24 (0 dr + 1 )]

1 {01«1 o dot 1 _(:)‘UO

1 ‘05'“0 2 0 0
Dir, )= g Lo 0 0 e 0 [ ey )

The ¢ (1), ct (O, 110 (), TIX (1), (L), N(¢) 1in these formulas are arbitrary
functions of their arguments, They should be determined from the boundary
conditions of the problem, i.e. from (1.2) to (1.4), (1.7) and (1.16).

We also seek the unknown functions a{t}, R{z) in the form of series
a=2a% -+ eat --...,R=R"}eRt 4 ... (2.6)

The boundary conditions on the surface of the explosion cavity yleld:
for the first approxlmation

— 00 (a t) = (a'), 2 (% 1) = (a%) (2.7
for the second approximation 2.8)

, G A7 o dat 1 9 07,0
- Url (ayot):: [‘l ((ZO) “LTr" O‘ru (aﬂ’l)} a'lv Z'I(Quﬁi) T - a '('T; v (a 71)
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The condition on the shock yield

for the first approximation (2.9)
— (0,0 — 6%,),_po = 0 [(0,0 — 6,9) (R” — 2,9}, _p,
R" ©°— 0,°), _p = [ — 095(1—0,9] . (09 — a0,9), _po — =20
for the second approximation (2.10)

— [t — o1+ B2 (00 — 0.0)] o, =pe(2(0,0— B)(R— ) (R* — vg)+
+ (B — 2 @41 — 0 B (0,0 — 0) (R” — 0Py

[RY (8,0 — 0,°) + R” (0, — 6,') + R"R" a—a, (00 — 0.)],_pe =
— {0 — ol (1 — 0,9 + 20,2 + B 2 [ v (1 — 0,91},

d
1
[crwg —aol + R y (6,0 —ac.9)] 0

¢ r=RY =

The condltion on the shock wave prilor to the time of elastlc wave origl-
nation are obtalned from (2.9) and (2.10) if we put v,=0, 6,=0, 0,,= —-p, .

It is seen from the obtained formulas that the fundamental problem 1s a
nonlinear first-approximation problem. After 1t has been solved, the con-
struction of the second-approximatlon solutlon reduces to the solution of a
linear problem.,

3, Let us solve the first-approximation problem. Substitution of (2.4)
into (2.7), (2.9) ylelds (3.1)

SO = @G, L=r— @ IO = [ @) + ] @
PR 8 — py = — T g0 (R, 1) — 28
0,0 (B%, ) = £ (L) = f [(R)® — (@)= 0, [p* (B, 1) — po]

_or‘) (RO’ 1) = (RO)—z(l—a) {w (aO) (a0)2(1—a) -+ : E - [(aO)ﬁ(l—a)__ (Ro)z(l—ﬂ)] —

Re Re
1 dﬂ(aO)sg r2 gr 2 [d (a%)? TS r~(3243) gr }“

T3 Tar 1—0°(r, 2) 9| at 1—0.0(r, ¢)

=00 8,0 (R",1)— 8.° (R, )] [R” — v." (R, )] — oy¢ (R", 1)
R [8,°(RY, t)—6,° (R°, )] = <%)2%"_ — 0 (R,Ot) [1 — 6,0 (R 8)]

6.3 (R° 1) — 009 (R, t) —p=0



1296 S.S. Grigorian

Here 0, = 0,(p," — p,) 1s a known function describing the loading
branch of the diagram for the volume compression of the ground.

The relationships (3.1), together with expressions
for the elastic quantities (1.13) and (1.1%), are a
closed system of equations to determine the funetions

¢ (1), I (), 1 (L), @® (1), R (1), @ (cot —7),
Ur(: = 01‘0 (RO’ t)’ p(,.) = po (RO, t)? 6*0 (RO’ t)

In the initial stage when R” > ¢,, elastic terms
are missing from these equations. i.e. ® = 0. 1t
is important to stress that the Cauchy problem occurs
for the system (3.1), and it 1s not difficult, in
principle, to solve 1t numerically by using electronic
computers.,

The procedure for the solution
may be simplified If the follow-
ing is noted. Even for very con-
siderable pressures the quantity
g 1is very small, i.e. we have
8% <l 4in (3.1), and if 6% is
discarded as compared with unity
in the integrands, the integrals
will be considtent and the solu-
tion to (3.1) simplifies., 1In
particular, even the function

Filg. 2 0% wi1ll be determined here.

This function may be substituted
into the integrals in (3.1) and the process of constructing the solution may
be duplicated. Apparently these two lterations will be adequate. From another
viewpoint it may be consldered that there is a second small parameter
€, = max §3«1 1in the problem (3.1). Then, by expanding the solution of the
problem (3.1) in a power series in ¢, and retaining the first two terms, we
obtain the above-mentioned two iterations.

Results of solving the system (3.1) for sandy ground of undisturbed struc-
ture are presented in Fig.2 (the necessary experimental data are taken from
[12]) for the initlal stage when the elastic wave had not yet appeared (*).
The nondimensional shock-wave radius (referred to the radius of the charge
is plotted ailong the horizontal and the nondimensional radial stress on the
shock wave along the vertical. Curve 1 corresponds to the exact solution
obtained by asslgning e,(ﬁ) from experiment (in place of the function
0.(P,—p,); as was remarked by Rykov, assigning 8,.(R) permits explicit
solugion of the problem in Lagrangian coordinates in quadratures). Curve 2
corresponds to the first iteration with the approximations obtained from the
exact solution of 6,(p,— P,) by means of

0, = [ps —po) /AP

(the exact solution and the approximation are given by curves 1 and 2 in
Fig.3, respectively). Curve 3 in Fig.2 has been obtained from the same
experiments from which the dependence 8,=6,(R) was taken for the construc-
tion of the exact solution. It 1s seen that the first iteration ylelds a
good enough approximation to the solution. The existing discrepancy may
be associated not so much with the roughness of the first iteration as with
the noticeable difference in the dependences 6,= 8,(py,~p,) used in both

*) Computations performed by T.B. Larina on the "Strela” in the Moscow
State University Computation Center.
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solutions (Fig.3). The discrepancy with experiment for & > 20 1is apparent-
1y connected with neglecting the elastic wave in the computations, since at
these distances, the elastic wave 1s recorded in experiments.

Let us now clarify Jjust how far the obtalned method of solution deseribed
above, which is based on the assumption that sheer proceeds plastically
behind the shock, may be used. Subst}tuting the obtained formulas into the
expression for A in (1.1), we obtain that the shear will be plastic for
the first-approximation solution if the inequality

L I 4 30 14 d 0 8
A= 5 Gle(l—a)— Bl (— ) — F (p) (5 + =

1s satisfied.

)>0 (3.2)

Since 0, < 0,1 —g >0, B> 0 and as calculations for the initial
stage of the motion show, dp/at < O , then while g°> 0, 1l.e. while
da®/dt> O and gp/dt < O the shear will be plastic. Only &t times close
to the time when the exploslon cavity ceases to expand (1.e. at the time
when o%= 0) does elastic unloading by means of shear strain begin. In con-
structing the solutlion of the problem it is necessary to keep track of the
sign of A* and at the time when A* vanlshes, construction of elastle
unloading waves by means of shear strain should be started from the point
where A* vanished., Taking account of the second approximation changes the
o= quantity A* somewhat (but

*

- ,/ negligibly), hence, such an
e j? /5// accounting may affect the
08 / value at the mentioned time

/{::// only inessentially. However,

it should be noted that the

06 4
///// first term in the expression
for A* wi1ll be the princi-

0% 4
pal term at this later stage
/fﬁ;ﬁy in the motlon since 1t is of
02 ////” the order of @eo,v/r and the
“”,/ second term 1s of the order
—_ of @,°v/r , then the ratio

g o1 oz 4.3 8 between these terms is of the
Fig. 3 order of G /g, ~G/ps~10°.
Hence, to great accuracy the
time of origin of elastic shear unloading agrees with the time of cessation
of cavity expansion (da®/dt = 0). Since A* = 0 at this time for all values
of r , the unloading starts simultaneously 1n all particles from the cavity
surface to the shock wave or to particles in which the shock-wave intensity
has vanished.

Starting with this time the motion will be described everywhere by the
linear equations of the theory of elastlcity, where the modulus of volume
compressibllity x and the density in the particles which the shock wave
has passed willl differ from the initlal values (¥ 1is determined in each
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particle by the appropriate unloading branch of the volume compression dia-
gram). The difference in the density from the unperturbed value may be
neglected because of its smallness (p « 1), while X will change consider-
ably by decreasing from very large values as 7 1increases and passing con-
tinuously over into the unperturbed value for r = Ra . In the domain r> R,
the solution of the problem is determined by (1.14%) with the as yet unknown
function & .

The motion in the domain g, < 7 <{ fl
will still be described by linear equations,
however the coefficients of the equations will
be functions of r Dbecause of the variability
of x , and the equations will be inhomogene-
ous, hence it 1s impossible to write down a
general solution of type (1.14) for them. The
solution may be constructed numerically by the
method of characteristics, say. However, &
simple approximate solution of tae problem may
be constructed even for this case. The appro-
ximation is that the volume compressibility modulus ¥ , which is very large
almost everywhere in the domain g, <7< fl5, , 18 put equal to infinity,
which reduces the problem in this domain to a static problem. This solution
will be poor directly near the line ¢ = ¢, (¢, is the time ir which unload-
ing starts (Fig.3)). Actually, the stress distribution at time ¢, , which
does not satisfy the equilibrium equatione (since only the velocities and
not the accelerations are zero at the time ¢ = t,), is changed by a Jump
by this solution into the distribution satisfying the equllibrium equations
(1.e. this solution makes the acceleration zero by a jump). This process
occurs gradually in the exact solution, however, because of the slowness
of the motion near the cavity the solution obtained here under the
assumption of incompressibility of the medium (¥ = =) will differ slightly
from the exact solution [10] by eliminating a narrow strip near the segments
t =, au,sirr << R.,. In order to estimate the size of the strip it may be
considered that its upper bound is a plece of the characteristic reflected
from the line r = g_ which goes leftward from the point ¢ = ¢, , r =R
(Fig.4; 1f x = = this strip has zero width, it coincides with the segment
t =t, », 1ts upper bound in the exact solution 1s the curve AB).

Fig, 4

The stresses and veloclity in the approximate solutlon will undergo a dis-
continuity on the characteristic 00, , and there 1s no such discontinulty
in the exact solution.

The approximate solution may be refined by constructing the line 045
exactly (this 1s easily done) and by smoothly connecting the values of the
stresses at the point (0 on the segment (0B wlth their values at the point
B which have been obtained from the static solution in the domain

oo K T g; R.,, and which have been kept constant on the line r = R_ above
the point pB. The elastic wave may be constructed by means of the distri-
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bution ¢, at r =R_ which has been obtained 1n this manner, i.e. the func-
tion ¢ may be found for (1.1%) in the domaln above the characteristic 00, .

Let us write down the formulas for the described approximate solution,
For X = = the solution in the domain @, < r <{ R, 1s determined by

6, =262 _p, 0,=26%_p, u=24 (3.3)
where 4 = const , y 1s the additional displacement relative to the state
achleved at time ¢ = ¢, . The boundary condition of the cavity determines
the constant a 8

A = [ (a) — pol 4 (3.4)

The stress distribution along the line r = R, (Fig.4) 1is determined by
the function. ¢, (}?w,t == f(t) , which changes smoothly as ¢ changes from
t, to t, , where ¥, is the time corresponding to the point 7 , from the
value of ¢, at the point ¢ , known from the solution of the problem for
<!, up to the value at the point p , determined by (3.3), (3.4) for
r=R_ . For t> ¢, the quantity ¢, remains constant. A smooth connection
may be made by retalning a continuous derivative of ¢, with respect to ¢
at the points ¢ and B (*). By satisfying the condition of continuous o,
at r =R_ , we obtain Equation

1 Y4 ’
puce* f7= @ (et — ) + 40°[ 5 @ (ot — o) +
o« (2]
1

+g © (et — R)l} — py = 1 () (3.5)

for & whose solution 1is

D (§) = e*G-%) [A sin (VB — 08) + B cos (VB — a?8)] +

+ VTi—_E*‘_ ;F (2) =0 sin [V'§ — o® (& — {1 dg
FO==lf(22 )1 n],  w-an-Re 66

2¢2 _
* =gt A =0y sin (VB @) + (@) + at) <2V EZTE
4T2 Y . -T—
B= R 2’ B = @, cos (VB — %) — ((Dl, + aCDl) sin %ﬁ- ;2&1)
The initial values @; = @ (&;), @'= @’ (&) 1in (3.6) are taken from
the solution constructed before for the value §< §1-

The complete construction of the solutlon of the first approximation
problem 1s thereby terminated. It 1s understood that the exact solution may
be constructed for ¢ > t,, the solutlon for this is constructed numerically
by the method of characretistics in the domain ¢ > ty, Ao < r < Roo up to

*) A more exact result may be obtalned by determining exactly the value of
ao,/at at the polnt ¢ from an analysis of the solution in the neighbor-
hood of the point ¢ and using this value in the Junction.
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the time ¢, at which o,(R_,t) practically becomes a constant given by (3.3)
and (3.4), and the solution 1s then continued by using (3.6) with the appro-
priate initial values @ (§,), @' (&) (&, = cofy — Ruo)

By having constructed the first-approximation solution, the linear second-
approximation problem may be solved by using the quadratures (3.5) deduced
above and the boundary conditions (2.8) and (2.10), defining the arbitrary
functions.

However,- the most interesting properties of the solutlon, particularly
the properties of the emitted elastlc wave, are, 1n practice, determined
exactly in the first approximation.
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