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The solution of the problem of explosion of high explosive charges In the 
ground Is of Interest for the needs of seismic prospecting, mining, or pro- 
duction of underground cavltles,by an explosion method. In various cases It 
Is necessary to have Information of the different characteristics of this 
solution, on the energy and mode of the elastic waves emitted by the seat of 
origin of the explosion; on the dynamics of the formation of the explosion 
cavity, on the stress and velocity fields In the zones near the explosion 
where Inelastic behavior of the ground is manifested essentially, etc. Some 
approximate solutions of this problem are known [l to 71, which are based on 
very strong simplifying schematlzatlons of the phenomena and which do not 
give sufficiently satisfactory quantitative and qualitative results. An 
attempt Is made below to give a more rigorous formulation and effective solu- 
tion of the problem of an underground explosion by using existing theoretical 
conceptions of the behavior of ground [8 to lo], as well as the results of 
experiments formulated especially on their basis [ll to 153. 

1. The equations of the problem for centrally symmetric motion of the 

ground are, as follows from [9]: 

g+ v~+(l-G,(~++) =o 

p” ($ +z16; au ) - (1 - 0) [$ + f (5,- 3,)] = 0 

2%+~3!+(!!$ + o$)e($+ .$)e(e Al*) 

2G[~--(~+~)]=a’s~~P’+~ a”;I+P) +R(cr++) 

G[++($++)]= a@;t+P’ + u a@;;p) +h(a,+p) 

2F @)A = [-f G (ur - orp) (g - +) - F’ (p) (g + 

(1.1) 
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1287 



1288 8.1. origorlan 

(1.1) 
e(2) = 2J2 -(~P+P)2+2(cp++)2 cont. 

- 3p f or + 2a,, P - PO = f(% 0,) (fki-F, e*,i+) 

The Initial and boundary conditions of the problem are 

0, (r, 0) = Gp (I', 0) = -po, 2r(r, 0) = 0 

Here r and t 

e (r, 0) = 8, (r’, 0) = 0, 0 a0 (1.2) 

or (a, t) = - 9 (4, v (a, t) = da / tit 

t) - - PO, 0, b-7 4 - - PO, v (r, t) --, 0 (1.3) 
0 (6 0 -+ 0, 0, (6 t) - 0 for r + 00 

areathe coordinate and time; u Is velocity; ur and o 
(0 

are the principal stresses; p and PO are the present and Initial densities; 

(J Is the shear modulus, and p. Is the initial pressure ln the ground; the 

functions &) and y(e,e,) describe the condition of the Plastlclty and 

volume compresslblllty of the ground. 

The function +(a) ln the first of conditions (1.3) expresses the cus- 

tomarily used hypothesis on adiabatic and quasi-st&tlonary change In the 

state of the gaseous explosion products and, for the customary high explosive 

(as TNT, say), may be taken ln the form 

21’ (a> =&pi$)-“’ (for TNT y z 1.25, p,, 2 2 x l(r kg/&) (1.4) 

The unknown function a - a(t) describes the law of boundary motion of 

the explosion cavity and should be found during the process of solving the 

problem. 

As the e 
“4 

erlments [ll to 153 show, the function F(p) for sand, loam, 
loesa, clay and only such ground will be considered herein) la 

6F @) = @P t b)* (1.5) 

In a range of variation of p from small values to hundreds of atmospheres. 
The pressure P In the explosion problem varies between several tens of 
thousands of atmospheres (the value of PO0 In (1.4)) to small values on the 
order of PO. 

For large values of a 
thousands of atmospheres ., the function F(P) should remain bounded [lo and 

7 ( PP arently on the order of thousands and tens of 

163, I.e. the relationship (1.5) cannot be ised throughout ln solving the 
problem of an explosion In ground set ln motion at all times. There are not 
yet specific experimental results on the value of P , starting with which 
F(P) ceases to Increase. However, taking into account the abrupt drop In 
all the stresses, particularly in p ln a small neighborhood of the explo- 
sion cavity In the first Instants after the detonation of the high-explosive 
charge, It can apparently be assumed without great error,that the relatlon- 
ship (1.5) holds for all values of P encountered in the problem. 

In the first instants, when a small region of ground around the explosion 
cavity Is In motion this region will, as may be shown, be separated from 
grdund not yet involved In the motion by a spherical surface of strong dls- 
continuity, a shock wave being propagated Into the ground at rert. The state 
of the ground p@rtlcles directly behind this surface It: determined by the 
dependence of a, on ij = f~,, which has been obtained ln the analysis of unl- 
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axial deformation of a ground element, and which, for large values of o,, 
may correspond to strain with elastic shear, i.e.,weMll have Ja< F(p); for 
smaller values of u,,may correspond to strain with plastic shear, i.e. 
Jo” F( ). 
and 17 P 

The value of u, dellm.ltlng these two states Is determined (1.6 
by the form of the function F bj and p*- Po = ~(0,) E j (C*, 0,). 

After the shock wave has passed the particle, this latter starts to be 
moved toward Increasing r , shear strains develop, and at a certain tine 
they become such that plastic flow sets in, i.e. for large values of 0, the 
elastic strains for which A = 0 will hold only in a certain layer adJacent 
to the shock-wave surface. *cause of the large value of a(a-l@kg/cm'), 
as is seen from (l-l), the elastic shear strains may only hold for small 
values of particle displacement 8nd it can be expected that this layer will 
be relatively thin. Hence, to simplify the mathematical problem, the etist- 
ence of this layer can be neglected and we can consider that the plastic 
flow starts directly behind the front of the shock wave. This assumption 
p;;bably Introduces a negllglbly small error into the solution of the prob- 

. 

In the expression for A (see (l.l)f, the difference is o, ---o&C for 
JD= F(P). As will be seen from the solution to the problem construc.tedbelow, 
the inequalities +/at+ v$pj&< 0, au/ &<C also hold in the initial 
stages of the motion. Horeover, v w 0 in the initial stage, All this means 
that if the plasticity condition is satisfied on the shock-wave surface, It 
is also retained everywhere behind this surface in the initial stage. 

The assumptions made permit sfmplification of the original system of 
Equations (1.1). 

Henceforth, we shall use a simplified system, as 

Gc+ = UCfr + fig -3p=u,+2a,, a= 3v/a-k 

e = e* + EQ, (P - po, o,), 31/.i+“k’ 
pz _3b 

3 r/z-i-212 

Here E is a small parameter (8 < 1). The smallness of the parameter 

E Is associated with the fact that, as experiments show, the discharging 

branches of the e - Q(p - pO,e+) diagram are very inslgnlflcantly inclined 

to the P-axis for the ground being considered. 

Hence, the characteristic value of this slope may be introduced as E 

and it may be considered that cp(p -pot8*) - 1 . 

Conditions (1.2) and (1.3) change partially: conditions of the shock 

wave 

-~~~~-br(R,t)==~~+~~B~(dRjdt)~, u,zv(R,t) =@,dR/dt 0.7) 
replace the conditions for F - (9 . 

Here F = R(t) Is the unknown law of shock-wave motion. The shock wave 

will attenuate aa time passes, its propagation velocity &R/&t will drop 

and a time will arrive when it will become equal to the propagation velocity 

of small elastic disturbancea in the Weformed ground at rest ahead of the 

shock wave 
c* = I-.-. PO--l dcr, (e) / del& 

Here up= o,(e) is a dependence corresponding to uniaxial atrain. In the 
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notation customary 

poco' = h + 

5.9. or1gor1an 

In the elasticity theory, we will have for c0 

2p=h$2G=K+$G, K = (dpldrj),,, (1.8) 
Here 1,~ = G are Lam4 coefficients. 

Starting with this time, a slight motion starts ahead of the shock wave, 

em;lsslon of an elastic wave by the shock wave-front begins and the subse- 

quent construction of the problem should take this wave Into account. 

Experiments show [ll to 133 that small elastic disturbances actually emerge 

to the front at some distance from the seat of the explosion during propaga- 

tlcn of the explosion wave. 

The possibility of the emission of an elastic wave Is determined by the 

properties of the dependence ox= o,(e) obtained from the Initial undeformed 

state during unlaxlal strain. For small strains, this will be the elastic 

relationship 
(u Is the 
displacement) (1.9) 

If plastic shear strain starts with Increasing e , the relationship (1.9) 

Is replaced by another, obtained by using the plasticity condition (1.5) 

- Gp (Y = mp (0) 4- q, 
3 

?r2 =l$ ,=2?_ 
1+22 

(1.10) 

Evidently the transition to plastic shear Is possible when the curves 

(1.9) and (1.10) intersect In the a,@ plane at the point (13 =tll, u,= - u,). 

If the condition 2v/ZG 
h'<T (1.11) 

Is satisfied, such an Intersection always occurs. If Inequality (1.11) Is 

not satisfied, there will be no Intersection at p"(o) > 0 for any value of 

0 ; It may occur In this case If P'(e) Is negative for small values of 0 

and positive for large values of 8 . In all cases when there Is an lnter- 

section, the unlaxial strain diagram will agree with (1.9) for 8 < @, and 

with (1.10) for e > e1 ; however, plastic shear may again set In [16 and 173 
for significant P . 

The quantity - do,/d8 will decrease by a jump at the point of lntersec- 

tlon. If p(e) = ffe (linear elasticity) for e 6 el, the perturbations 

ahead of the shock will be described by linear equations of the theory of 

elasticity, If the dependence p(e) is nonlinear, then the equations descrlb- 

lng the perturbations ahead of the shock will be nonlinear also. However, 

this nonlinearity Is usually negllglble and It is apparently possible to 

limit oneself to the linear-case. 

The solutions of the problem should be constructed by joining the solution 

of (1.6) to the solution of the equations describing the perturbations ahead 

of the shock by means of the conditions on the shock, which will differ from 

(1.7) because of the perturbations ahead of the wave. However, these condi- 

tions will be inadequate because the perturbations ahead of the shock are 

themselves unknown, hence, still another (precisely one, as will be seen 



from the subsequent exposition) condition should be appended. 

The choice of this condition for the one-dimensional plane motion case Is 

elementary [18 and 171 and reduces to the following. If the 

p”(g) > 0 Is satisfied for 0 ( 0 < ol, then o,= - 0, will 

Mon. If the Inequality P”(8) < 0 is satisfied for 0 5 e 

condition reduces to the equality 

Inequality 

be this condl- 

< 01 then thla 

for O<e<e, and to the equality 0, = - 0, for 0 - 8, ; In the latter 

case the Inequality 

dR i’ dt - u, < c, (0,) 
will be satisfied. 

Here U, is the particle velocity directly In front of the wave. It 1s 

much less than &R/at and o,, hence It may be omitted from the lnequall- 

ties. 

The situation Is more complicated in the case under consideration because 

a 0, - o,(e) does not exist here (0, depends on two arguments au/ar and u/r; 
u Is the displacement), whose properties determine the selection of the 

additional condition. However, considerations on shock-wave stability and 

evolutlonarlty of the solution, which permit making the selection of this 

condition in the plane case [17], are easily realized in this case too. If 

P”(e) < 0 for -0 < e < el, the stability condition again leads to the rela- 

tion 
i3U 11 

G-=,,, ET=7 (1.12) 

Since the perturbation ahead of the shock Is propagated Into a medium at 

rest, It will be a one-direction wave (divergent), hence conditions (1.12) 

are sufficient for the solution of the problem in the case considered. If 

p”(e) 2 0 for 0 S e e e,, the leading edge of the perturbation will also 

be a shock wave. The Intensity of this wave, as well as the continuous 

motion behind It up to the fundamental shock, are determined by a function 

which Is unknown and Is determined, If one mlsslng condition connecting the 

motion parameters directly ahead of the fundamental shock, Is appended. It 

can be shown that the plasticity condition 

(1.5) will be this condition. 

Fig. 1 

Let us assume that this Is not so, 1.e. to 
the right of the line r = R(t) In the rt 
plane, there Is a left boundary line of the 
domaln of motion where the shear proceeds elas- 
tically (line OA Flg.1). Condition (1.5) 
Is satisfied In th;! region between this line 
and the line r = R(t) ; the shear proceeds 
plastically. The case when the shear la elas- 
tic everywhere to the right and up to the line 
r = A(t) Is e: ldently Impossible since 
M/dt > c would hold for 
which Is rncompatlble with he fact that the 

e”(e) 3 0 (0 G e< e,), 

line r = R(t) must pass through the olnt 0 
(time of emission of the elastic wave 7 Into 
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the domain where &dt < o 
behind the leading edge of %e~&t&b%% 

( Is the value of 0 directly 
“t% slope of the line’ OC). Ety 

virtue of condition (l.ll), the propagatlon’veloclty of the small perturba- 
tions In 4ihe plastic Qomaln BOA will be smaller than In the elastic domain 
AOC. It Is also evident that the propagation velocity of the boundary state 
at each point on OA (the slope of the line OA ) should be Included between 
the values of these perturbation velocities at the points on OA . 

Let us now consider the characteristics of the tiio families in, and m 
for the plastic equations. Evidently, if the solution on j(~ is known, we 
have a Cauchy problem in the triangle mN , which Is solved uniquely and 
determines the values of the desired functions at the point D on the shock 
wave 08 , which makes the conditions at Its point D completely defined 
and sufficient for the construction of the solution to the left of the shock. 
Moreover, If the l%ne OA Is prescribed, the solution is completely defined 
In the elastic domais AOC also. Hence, assignment of this, line completely 
defines the solution of the problem as a whole, where such assignment may be 
completely arbitrary, and the solution is not unique. The solution of the 
problem turns out not to be evolutionary, I.e. assignment of the desired 
functions at a certain time t = t, does not determine the solution uniquely 
in subsequent times. The aontradictlon Is eliminated If It is assumed that 
the plastic domain BOA does not exist, I.e. that condition (1.5) is satls- 
fl d only direct1 

f (1.5 T 
ahead of the shock wave on the line 09 . This means that 

re atlonshlp should be taken as the missing condition connecting the 
values of the motion parameters on the shock. 

For slmpllclty, we shall henceforth consider linear relationships to 

describe the motion ahead of the shock. In this case, the dependence5 be- 

tween the stresses and velocities of the deformations which are obtained from 

(1.1) for A SE 0 and 0, = 0 < 1 transform into Hooke’s law after integra- 

tion with respect to the time 

Q re = (&fG)($+$)+2G$-p,, 

6 ‘pe = (K-~G)(~+~)+2G~-po (1.13) 

As ia known, the solution of the problem of a diverging centrally gymmet- 

rlc elastic wave is expressed in terms of one function by means of Formula 

a @ (cot - r) 
uu = ar r 

@ 0,’ &I 
= ---_ 

$ v, zs at = - co ($+S) 
%u = P&o2 ,++*;2;aw +$D),-po 

he = PoCo2 C i---r2 a,” - r -2r”(9 +&q]-PO 
G 

r2 = K j-k/s G 
1 - 2G 

=qc%j (1.14) 

Here y la the ratio of the transverse and longitudinal elastic wave 

velocltlee; Q Is Poisson’s ratio, the primes on the # denote dlfferen- 

tlation. The conditions on the shock r = R(t) are written as 

- (up* - are*) = PO (;Jy2 (R’ - %*)2, a,* = au,,* + p 

R’ (0,. - 0,) = (1 - 0,) vu* - (1 - O,*) v, (1.15) 

Here and henceforth the dot will denote differentiation with respect to 



time and the values of the quantities on the shock will bear the subscript 
* Since e,-gi, in the elastic wave, conditions (1.15) may be simplified 

- tar. - o;,*) = p. (e, - e,*) (fr - v,q, fJve* = cm,,* t- p 

R- (e, - e,) = V* - (1 - e,) v,* (1.16) 

It is easy to show that the expression A for particles directly In front 

of the shock will be zero. In the elastic wave Itself, I.e. for r > J?(t), 

the condition that the shear proceeds elastically Ja< F(p), reduces to 

This Inequality turns Into an equality at the point of each characteristic 

f =o,t-r-const for r=R. Since the left-hand side In (1.17) ap- 

proaches zero for 5 = const and R < f 4 = , and the right-hand side 

approaches a posltlve quantity It may be expected that condition (1.17) will 

be satisfied, I.e. that plastic shear domains will not occur ahead of the 

shock (this latter clrcumastance would substantially complicate the solution 

of the problem). Of course, compliance with condition (1.17) everywhere in 

the domain r > R(t) should be confirmed In the actual construction of the 

solution. 

As time passes, a time t, sets in when the shock wave la completely 

exhausted, I.e. the equalities v, =v,,, 8, = e,,, Or* = bre*, will be satls- 

fled at F = R, = R(t,) , after which the motion will be continuous every- 

where, hence It will be a diverging elastic wave of (1.14) type In the domain 

F>R_, which should join continuously with the solution of (1.1) in the 

domain r < Am . 

2, Let us seek the solution of Equation (1.6) as power series in the 

small parameter 0 , I.e. 

V = 2.” + EV’ + . . . , p = p” + E$+ . . . , 8, = e,O + i3e,l 
0, = 90 + ECU + . . . , U, = COO+ ~0~1 . . . , e = 80 + ~81 + . . . 

(24 

Substituting (2.1) Into (1.6), we obtain first-approximation equations 

$_. + v~ $t + (1 _ 00) ($Y + _$.Y) = 0, a~+vo~!&o 

~o(~+vo~)-~~-e~~[~+~~~~-~~~]=o 

-3pO = arO+2u;, 80 = e*o (2.2) 

!l!he second approximation equations are 

(2.3) 
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We do not write down the equations for the subsequent approxlmations,they 
are awkward and not needed, in practice, for the solution of the problem. 
The Byetern (2.2) is nonlinear and agrees with the equations of the problem 
for the particular cBBe of a medium with the property de/at = 0 for dp/dtc. 0 
(an incompressible medium wlth volume unloading). All known attempts to 
solve this problem have been made precisely under this assumption on the 
medium [ 1 to 7). The system (2.3) is linear and may be solved after having 
constructed the first approximation. 

Solution of the systems (2.2) and (2.3) with the requisite number of arbi- 

trary functions are found by quardatures. For (2.2) we have 
?.(I ( p(/) p, k:bl) 

(2.4) 

The c” (t), cl (r),ri” (i), n1 (I), f (&r<(t) in these formulas are arbitrary 

functions of their arguments. They shpuld be determined from the boundary 

conditions of the problem, i.e. from (1.2) to (1.10, (1.7) and (1.16). 

We also seek the unknown functions a(t), If(t) in the form of series 

fi == a* -I- Ffil -j- I . ., II I= 1P -;- &RI -j- . . . (2.6) 

The boundary conditions on tne surface of the explosion cavity yield: 

for the first approximation 

I- ur” (a”, t) == li, (a”), 21’ (a”, t) := (LZ”)’ (2.7) 

for the second approximation (2.8) 
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The condition on the shock yield 

for the first approximation (2.9) 

- (0," - q&+2. = p" [(0*" - (3,") (R"' - 1-e”)21r=Ro 

R”’ (cl,” - ee”)p=RO = Iv” - v,“(l- e*“)lr&, (Q - aor:)r=Ro - P = 0 

for the second approximation (2.10) 

- [o,’ - or; + R1$ (CT,” - u~~)I~,~~ =p”{2(8*“- e,“)(Ro’--v,o) (R” - v,‘)+ 

+ (RO’ - ?I,“)” (8,x - e,‘)+R$ [(e,” - e,“) CR”* - 71,0)vj~=~~ 

[R” (8,” - e,“) + R”* (e,l - e,‘) + R”‘R1 -& (e*” - e,O)irxRO = 

= zil - 2,‘,1 (I - 8,“) + o,“e*l + R1 z b”- 2‘, (1 - e,qi}r_=i,. 
1 

[oq; - aor; + R1 $ (cr n - ao,.O,)l,,no = 0 ve 

The condition on the shock wave prior to the time of elastic wave origl- 

nation are obtained from (2.9) and (2.10) If we put U, = 0, e.= 0, o,,= -A. 

It is seen from the obtained formulas that the fundamental problem is a 

nonlinear first-approximation problem. After It has been solved, the con- 

struction of the second-approximation solution reduces to the solution of a 

linear problem. 

3. Let us solve the first-approximation problem. Substitution of (2.4) 

Into (2.7), (2.9) yields (3-f) 

c” (t) = (a”)” -g ) 5 = r3 - (u”)3, rI” (t) = - I$ (a”) + $J (u”p=) 

P” (R”, t) - PO = - ‘+s” (RO, t) - 3 /Z-3 

8,” (R”, t) = f (5,) = f [(R0)3 - (u”)~I= 8, [p” (RO, t) - ~“1 

_ o,D (R”, t) f (R”)-2(1-O) 
1 
$ (a”) (a”)a(l-a) _+. & [(a”)a(1-‘) _ (R”)2(‘-a)] _ 

RO 
1 da (uO)~ r -B dr -- - 
3 dt= s a, 1 - 0: (r* t) 

=po[e.g (RO,t)- 8,” (RO, t)l IR”’ - 2,‘,” (R”, t)]” - 

R”’ [e,” (R”, t)-e; (R”, t)l = ($)‘$ - Q” (R,‘t) 

oq; (RO, t) - agz (R”, t) - B = 0 

d (R”, t) 

[1 - 8,” (RO, 01 
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Here 0, = e*(P*” - PO> Is a known function describing the loading 

branch of the diagram for the volume compression of the ground. 

The relationships (3.1), together with expressions 

for the elastic quantities (1.13) and (1.14), are a 

closed system of equations to determine the functions 

co (0, II0 (0, f (5)7 a0 (0, R0 (0, @ (cot-r), 

or: = CT0 (R", % y: zz pc (P, t), Q*c (RO, t) 

In the Initial stage when RO' > co, elastic terms 

are missing from these equations, I.e. Q f 0. It 

i Is lmpor'tant to stress that the Cauchy problem occurs 

for the system (3.1), and It Is not difficult, In 

principle, to solve 

Fly. 2 

It numerically by using elec+zcmlc 

computers. 

The procedure for the solution 
may be slmpllfled if the follow- 
ing Is noted. Even for very con- 
siderable pressures the quantity 
f~ Is very small, I.e. we have 
eO,<l In (3.1), and If 8% Is 
discarded as compared with unity 
in the lntegrands, the Integrals 
will be consldtent and the solu- 
tion to (3.1) slmpllfles. In 
particular, even the function 
Wt will be determined here. 
'Ihis function may be substituted 

Into the integrals in (3.1) and the process of constructing the solution may 
be duplicated. Apparently these two Iterations will be adequate. From another 
viewpoint It may be considered that there Is a second small parameter 

= max ~0x1 In the problem (3.1). 
iioblem (3.1) In a power series ln 

Then, by expanding the solution of the 
cl and retaining the first two terms, we 

obtain the above-mentioned two Iterations. 

Results of solving the system (3.1) for sandy ground of undisturbed struc- 
ture are presented In Fig.2 (the necessary experlmentai data are taken from 
[12]) for the Initial stage when the elastic wave had not yet appeared (*). 
The nondimensional shock-wave radius (referred to the radius of the charge) 
Is plotted along the horizontal and the nondimensional radial stress on the 
shock wave along the vertical. Curve 1 corresponds to the exact solution 
obtained by assigning e,(R) from experiment (In place of the function 
e*(p -po)i as was remarked by Rykov, assigning e,(R) permits explicit 
solution of the problem in Lagranglan coordinates In quadratures). Curve 2 
corresponds to the first iteration with the approximations obtained from the 
exact solution of e,(p,- p,) by means of 

8, m- I(P* _I?") ,'AIR 

(the exact solution and the approximation are given by curves 1 and 2 in 
Plg.3, respectively). Curve 3 In Fig.2 has been obtained from the same 
experiments from which the dependence 
tion of the exact solution. 

0+= e,(R) was taken for the construc- 
It is seen that the first Iteration yields a 

good enough approximation to the solution. The existing discrepancy may 
be associated not so much with the roughness of the first Iteration as with 
the noticeable difference In the dependencea e*= e+(p+-po) used In both 

*) Computations performed by T.B. Larlna on the ttStrela' ln the Moscow 
State University Computation Center. 
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solutions (Fig.3). The discrepancy with experiment for A > 20 is apparent- 
ly connected with neglecting the elastic wave in the computations, since at 
these distances, the elastic wave Is recorded in experiments. 

Let us now clarify just how far the obtained method of solution described 

above, which is based on the assumption that sheer proceeds plastlcally 

behind the shock, may be used. SubstJtuting the obtained formulas into the 

expression for A In (l.l), we obtain that the shear will be plastic for 

the first-approximation solution If the Inequality 

:\’ G 4 ~G[5~(1--)-~P1(-~)-F~(p)(~~ -gg>o (3.2) 

Is satisfied. 

Since o,<O,l --a > 0, p > 0 and as calculations for the initial 

stage of the motion show, &p/&t c 0 , then while 09 0, I.e. while 

d@/dt> 0 and dp/a$ < 0 the shear will be plastic. Only at times close 

to the time when the explosion cavity ceases to expand (i.e. at the time 

when oO= 0) does elastic unloading by means of shear strain begin. In con- 

structing the solution of the problem It is necessary to keep track of the 

sign of A* and at the time when A+ vanishes, construction of elastic 

unloading waves by means of shear strain should be started from the point 

where A* vanished, Taking account of the second approximation changes the 

quantity A* somewhat (but 

negligibly), hence, such an 

accounting may affect the 
0.8 value at the mentioned time 

only inessentially. However, 

0.6 it should be noted that the 

first term in the expression 

for A* will be the prinoi- 

pal term at this later stage 

in the motion since It is of 

the order of @a,v/r and the 

second term is of the order 

Of arau/r , then the ratio 
between these terms is ofthe 

order of G/a ,-Glpo--lOs. 
Hence, to great accuracy the 

time of origin of elast;ic shear unloading agrees wlth the time of cessation 

of cavity expansion (d@/dt - 0). Since A* = 0 at this time for all values 

of f, the unloading starts simultaneously in all particles from the cavity 

surface to the shock wave or to particles in which the shock-wave intensity 

has vanished. 

Starting with this time the motion will be described everywhere by the 

linear equations of the theory of elasticity, where the modulus of volume 

compressibility K and the density In the particles which the shock wave 

has passed will differ from the Initial values (K is determined in each 
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Particle by the appropriate unloading branch of the volume compression dia- 

gram). The difference In the density from the unperfurbed value may be 

neglected because of Its smallness (ea l), while K will change conslder- 

ably by decreasing from very large values as r Increases and passing con- 
tlnuJusly over into the unperturbed value for F = R . In the domain r>ROD 

the solution of the problem I6 determined by (1.14) tlth the as yet unknown 

fun&Ion i . 

The motion In the domain a, < r < fL 
will still be described by linear equations, 

4 however the coefficients of the equations will 

be functions of r because of the variability 

of K, and the equations will be Inhomogene- 

ous, hence It Is Imposslble to write down a 

general solution of type (1.14) for them. The 
solution may be constructed numerically by the 

RCO 
+ 
r 

method of characteristics, say. However, a 

simple approximate solution of t;le problem may 
Fig. 4 be constructed even for this case. The appro- 

ximation Is that the volume compresslbllIty modulus K , which Is very large 

almost everywhere In the domain am < T < R, , Is put equal to Infinity, 

which reduces the problem ln this domain to a static problem. This solution 

will be poor directly near the line t = tl (t, Is the time Ix. which unload- 

ing starts (Flg.4)). Actually, the stress distribution at time t, , which 

does not satisfy the equilibrium equations (since only the velocities and 

not the accelerations are zero at the time t = t,), Is changed by a jump 

by this solution Into the distribution satlsfylng the equilibrium equations 

(I.e. this solution makes the acceleration zero by a Jump). This process 

occurs gradually in the exact solution, however, because of the slowness 

of the motion near the cavity the solution obtained here under the 

assumption of IncompressIbllIty of the medium (K - .p) will differ slightly 

from the exact solution [lo] by elImlnatlng a narrow strip near the segments 

t=tl, am<r<R,. In order to estimate the size of the strip It may be 

considered that Its upper bound Is a piece of the characteristic reflected 

from the line f = U,_ which goes leftward from the point t = t, , P - R, 

(Flg.4; if K = - this strip has zero width, It coincides with the segment 

t = t, 3 its upper bound In the exact solution Is the curve ,4B). 

The stresses and velocity In the approximate solution will undergo a dls- 

continuity on the characteristic 00, , and there Is no such discontinuity 

in the exact solutiOn. 

me approximate solution may be refined by constructing the line OAB 

exactly (this is easily done) and by smoothly connecting the values of the 

stresses at the point 0 on the segment OB with their values at the point 
B which have been obtained from the static solution in the domain 

a, f r < R,, and rihlch have been kept constant on the line r = A, above 

the point B. The elastic wave may be constructed by means of the dIstrI- 
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butlon u, at r = I)_ which has been obtained in this manner, i.e. the func- 

tion # may be found for (1.14) in the domain above the characteristic 00,. 

Let us write down the formulas for the described approximate solution. 

For x=m the solution In the domain aoo < r<-R,’ Is determined by 

cr,=2G+po, a, = 2Gf - pO, lL=$ (3.3) 

where A = const , u Is the additional displacement relative to the state 

achieved at time t = t, . The boundary condition of the cavity determines 
the constant 

%" 
A = NJ (a,)- pcl 4(; (3.4) 

The stress distribution along the line r = R, (Flg.4) Is determined by 

the function. c,b,,t)== y(t) , which changes smoothly as t changes from 

t, to t, , where t, Is the time corresponding to the point B , from the 

value of or at the point 0 , known from the solution of the problem for 

t\( t,, up to the value at the point B , determined by (3.3), (3.4) for 

r=R,. For t > ta the quantity 0, remains constant. A smooth connection 
may be made by retaining a continuous derivative of er with respect to t 

at the points 0 and B (*). By satisfying the condition of continuous a, 

at r =R_, we obtain Equation 

PoCo2 {km w (cot - R,) + 4y2 [& CD’ (cot - R,) + 

++ @ (cot - R,)l} - PO = f (t) (3.5) 

for + whose solution Is 

Q (Q = e-a(4-41)F L4 sin (v/p - GE) + B cos (7/p - a2Ql + 
c 

F (5) e-a(4-<) sin [1/p - a2 (E - C)l dC 

P = Ea 9 B = Q cos (I/p - a”&) - (aI’ + a@‘,) sin ;-y” 

The initial values @D, = @ (&), aI'= <D' (El) in (3.6) are taken from 

the solution constructed before for the value E < El. 

'Ihe complete construction of the solution of the first approximation 

problem Is thereby terminated. It 1s understood that the exact solution may 

be constructed for t > t,, the solution for this Is constructed numerically 

by the method of characretlstlcs In the domain t >&, a, <r<&, up to 

*) A more exact result may be obtained by determining exactly the value of 
ao,/at at the point 0 from an analysis of the solution ln the nelghbor- 
hood of the point 0 and using this value In the junction. 
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the time t, at which o,b_,t) practically becomes a constant given by (3.3) 

and (3.4), and the solution Is then continued by using (3.6) with the appro- 

priate Initial values Q (&), CD' (&J (& = cot, - R,). 

By having constructed the first-approximation solution, the linear second- 

approximation problem may be solved by using the quadratures (3.5) deduced 

above and the boundary conditions (2.8) and (2.10), defining the arbitrary 

functions. 

However,. the most Interesting properties 

the properties of the emitted elastic wave, 

exactly In the first approximation. 

of the solution, particularly 

are, In practice, determined 
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